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Abstract Drylands cover over 40% of the global land area and are home to more than 2 billion humans.
Here, we use the terrestrial water storage (TWS) anomaly data derived fromGRACE satellites to assess water
storage changes globally and find that drylands lost ~15.9 ± 9.1 mm of water between April 2002 and
January 2017. The TWS trends are more significant and apparent in dry regions than in humid regions. The
decrease in TWS occurred mainly in hyperarid and arid regions. Exact causes to the observed declines in
TWS remain elusive due to anthropogenic water withdrawals, atmospheric demand (potential
evapotranspiration, PET) in contrast to supply (precipitation, P) caused by the warming, and terrestrial
ecohydrological responses. Therefore, we use a process‐based model forced by climate data to interpret the
causes over three selected dryland regions showing the strongest drying trends. We find that the modeled
TWS without considering anthropogenic water withdrawals explains most of the declining GRACE TWS
over the southwestern North America (NA) andMiddle East but underestimates the drying trend over North
China. This suggests that TWS declines in the southwestern NA and the Middle East were primarily
driven by the contrast between atmospheric demand and supply, whereas anthropogenic water withdrawals
may have played a relatively more dominant role in TWS declines over North China. Additional model
experiments indicate that terrestrial ecohydrological processes that help extract deep substrate water
are critical for providing water supply additional to precipitation to sustain ET in the drying drylands at
decadal scales.

1. Introduction

Drylands cover more than 40% of the global land area and support approximately 2.5 billion people (38% of
the global population) (Reynolds et al., 2007). Around 90% of the dryland population lives in developing
countries that lag significantly behind other areas with harsh humanwell‐being (Safriel et al., 2005). In these
regions, freshwater resources are critical for domestic use, irrigated agriculture, and economic development
(Wada et al., 2010). In addition, dryland ecosystems, as the world's largest biome (Schimel, 2010), strongly
depend on water resources for biological activities that are essential for ecosystem functionality and service
(Delgado‐Baquerizo et al., 2013). They contribute to ~40% of global net primary productivity (carbon intake
by plant photosynthesis minus release by plant respiration) (Grace et al., 2006; L. Wang, D'Odorico, et al.,
2012) due to their high rain use efficiency (Huxman et al., 2004; Ponce‐Campos et al., 2013). Despite the
apparent drying trend since 1980s, dryland ecosystems dominate the trend and interannual variability of
the global terrestrial net ecosystem exchange (gross primary productivity minus the sum of ecosystem
respiration and carbon release due to wildfire) (Ahlström et al., 2015; Poulter et al., 2014).

The scarce and highly variable precipitation in dryland regions, plus their relatively high atmospheric
demand for evapotranspiration (ET), causes drylands to be stressed by climatic water deficits (Huang
et al., 2016, 2017; Middleton & Thomas, 1997; Prăvălie, 2016). In a warming climate, although the actual
atmospheric water vapor has increased globally (Trenberth, 2011), which is consistent with both theory
and climate models, the atmospheric water vapor pressure deficit has significantly increased due to the
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warming. Despite no significant changes in global average precipitation (Gu et al., 2007; Polson et al., 2013;
Trenberth, 2011), the global water cycle is expected to intensify by amplifying the contrast between global
dry‐wet patterns (Allen & Ingram, 2002). Drylands are expected to become drier under warming conditions
(Chou et al., 2009; Held & Soden, 2006), exacerbating existing water crises and posing serious challenges to
water availability and cropland productivity (Safriel et al., 2005).

As a part of the Earth system (Palmer & Smith, 2014), humans in drylands respond to water scarcity by
pumping deep groundwater (Famiglietti, 2014; Gleeson et al., 2012). Unsustainable rates of groundwater
withdrawal have been reported in north India (Rodell et al., 2009; Tiwari et al., 2009), California's Central
Valley (Famiglietti et al., 2011; Scanlon et al., 2012), central Mexico (Castellazzi et al., 2016), the Middle
East (Joodaki et al., 2014; Voss et al., 2013), and North China (Feng et al., 2013). With continuously increas-
ing demands for freshwater resources that may not be balanced by limited water supply under population
growth (Safriel et al., 2005), water stress can have economic, social, and political ramifications
(Famiglietti, 2014). To pursue a sustainable future for dryland habitation, it is useful to investigate the chan-
ging states of the freshwater resources over these areas and the causes to the change.

The Gravity Recovery and Climate Experiment (GRACE) satellites provide accurate estimates of com-
bined changes in multiple components of continent‐scale water balance, including water stored in bio-
mass, snowpack, glaciers, soils, and aquifers (Landerer & Swenson, 2012; Swenson, 2012; Swenson &
Wahr, 2006). GRACE terrestrial water storage (TWS) data have been widely used to assess groundwater
depletion, glacier loss, sea‐level rise, droughts and floods, and ecosystem responses to TWS changes
(Chen et al., 2009; Du et al., 2019; Famiglietti & Rodell, 2013; Reager et al., 2016; Rodell et al., 2009).
As a cumulative effect of the water fluxes (precipitation‐ET‐runoff‐groundwater pumping and irrigation)
(Eicker et al., 2016) over time, the signal recorded in GRACE TWS anomaly data is more reliable than
the estimates of individual water flux terms. Recently, researchers have used GRACE measurements to
assess decadal changes of TWS at a global scale (Humphrey et al., 2016; Reager et al., 2016; Rodell
et al., 2018). As the TWS change records the combined natural and anthropogenic impacts on the water
cycle, its trends reflect the responses of dryland ecohydrological processes to climate change and human
interventions.

Previously, using GRACE TWS data, Scanlon et al. (2016, 2018) reported negative water storage trends in the
dryland river basins of the Colorado, Rio Grande, Euphrates, and Indus but increasing trends in the Niger,
Chari, Jubba, Okavango, Orange, and Murray. Focusing on arid and semiarid parts of the Middle East,
Forootan et al. (2017) reported declining water storage in the Tigris‐Euphrates, Persian, and Urmia basins
but increasing storage in the Khazar, Markazi, Hamun, and Sarakhs basins. Negative TWS changes have
been found in north India (Rodell et al., 2009; Tiwari et al., 2009), California's Central Valley (Famiglietti
et al., 2011), North China (Feng et al., 2013), and northwest Australia (van Dijk et al., 2011). However, most,
if not all, current macroscale hydrological models underestimate the decadal trends (either positive or nega-
tive) detected by GRACE (Scanlon et al., 2018), impeding the understanding of potential mechanisms caus-
ing the TWS changes. Therefore, the exact causes to the decreasing TWS trend remain elusive due to the
combined effects of increasing atmospheric demand (potential ET [PET]) caused by the warming, water sup-
ply that are controlled by rainfall and regulated by terrestrial ecohydrological processes and anthropogenic
water withdrawals.

Here we use the GRACE TWS anomaly data to evaluate the areal extent and degree of changes in water
amount over global drylands and assess how apparent and statistically significant the linear trends are.
While our analysis of the data includes global humid and cold regions (see section 4), we focus on dryland
regions because of their “vulnerability” to changes in hydroclimatic conditions and the relatively strong sig-
nals detectable by GRACE. To interpret the GRACE TWS trends over three selected dryland regions in the
midlatitudes of the Northern Hemisphere (NH), we analyze the trends in atmospheric demand and aridity
index (AI) using the Global Land Data Assimilation System (GLDAS) near‐surface hydroclimate data
(Rodell et al., 2004) and a process‐based land surface model (LSM), namely, the Noah LSM with multipar-
ameterization schemes (Noah‐MP; Niu et al., 2011). To discern the relative importance of the contributing
factors, we conduct two model sensitivity experiments using Noah‐MP with a focus on the role of two
“pumping” processes: groundwater capillary rise and plant root water uptake contributing to the surface
water “supply” in addition to precipitation.
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2. Data

The GRACE twin satellites launched by the National Aeronautics and Space Administration (NASA) and
the German Aerospace Center (DRL) in March 2002 orbit the Earth starting at an altitude of about
500 km (Tapley et al., 2004). Using a K‐band microwave ranging system, the satellites sense changes in
the intersatellite distance caused by the Earth's gravitational forces, thereby the strengths of fluctuations
in the Earth's time‐variable gravity field. The gravity fields are indicative of surface mass redistributions
represented as water equivalent thickness changes.

Here, we use GRACE Level 3 product derived from spherical harmonics (SH) solutions Release 5 (RL05).
The temporal and spatial evolution of TWS is processed by three centers, namely, the Center for Space
Research (CSR), the Jet Propulsion Laboratory (JPL), and the GeoForschungsZentrum (GFZ). The data
are available to download in geographical grid from the GRACE Tellus website. The individual time series
are referred to as GRACECSR, GRACEJPL, and GRACEGFZ. All data are anomalies relative to the long‐term
mean field (a constant value, averaged over all months from 2004 to 2009, assigned to each grid cell).
Therefore, GRACECSR, GRACEJPL, and GRACEGFZ describe water storage deviations from the mean state
at every grid cell, rather than the absolute value of water mass. Gaining or losing water relative to the mean
state is represented by positive or negative values of the TWS anomalies, respectively.

In this work, we analyzed the water storage anomaly data during the period April 2002 to January 2017; note
that we exclude Antarctica and Greenland. To reduce data noise associated with different processing meth-
ods (Sakumura et al., 2014), we averaged the monthly gridded values from all the three products and refer to

this time series as “ G.”Although the application of gridded gain factors restores signal amplitudes with sub-
seasonal to seasonal frequencies, it may be inappropriate for secular trend analysis (Landerer &
Swenson, 2012; Long et al., 2015). Therefore, in this study, we derived long‐term trends from the mean time

series G without using the gain factors. However, when comparing the time series of TWS anomalies with
model simulations over three selected regions, we did apply the gain factors. Details regarding data pro-
cessing are provided below and indicated on supporting information Figure S1. To confirm our conclu-
sions with GRACE SH, we performed additional data analysis using the CSR mascons RL05 TWS (Save
et al., 2016). Results using the CSR mascon are included in the supporting information.

3. Methods
3.1. TWS Linear Change Observed at Each Grid Cell

At each 1 × 1° grid cell, we decomposed the averaged TWS time series G into long‐term, seasonal, and resi-
dual components with the seasonal trend decomposition (STL) using Loess (Cleveland et al., 1990). Then, we
computed the linear trend mi (in mm/month) at the ith grid over the GRACE period, by fitting a least
squares linear regression line to the long‐term signal. By multiplying the trend value by the total number
of months (178), we obtained an estimate of water storage change (dTWSi= 178 ×mi; in mm) over the whole
period for each grid (Figure 1a).

We assessed the uncertainty,Uncerti, inmi, following Scanlon et al. (2018). This uncertainty accounts for (1)
the solution uncertainty among the three GRACE data sets, (2) the uncertainty of the linear regression ana-
lysis, and (3) the uncertainty related with the glacial isostatic adjustment (GIA) correction. The data set
uncertainty is represented by the differences among the slopes, computed as the square root of the mean
squared departures of the three slopes estimated from the GRACECSR, GRACEJPL, and GRACEGFZ time ser-
ies, respectively. The linear regression uncertainty accounts for the variability in the slopes computed by the
linear regression for each solution, computed as the square root of the mean squared departures of the stan-
dard errors (SEs) of the regression. The GIA uncertainty quantifies the systematic error of three competing
GIAmodels (Caron et al., 2018; Richard Peltier et al., 2018; Tellus, 2019; Wahr & Zhong, 2012), calculated as
the square root of the mean squared departures of the three GIA rates. For the ith grid cell, the combined
uncertainty si (mm/month) is the square root of the sum of squares (RSS) of the three uncertainty sources.
Finally, we multiplied the combined trend uncertainty by the total number of months (178) and obtained an
estimate of water storage change uncertainty (Uncerti = 178 × si) in mm. Global maps showing the indivi-
dual data set trend estimates (Figure S2), their SEs (Figure S3), and associated uncertainty estimates
(Figures S4–S7) are provided in the supporting information.
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3.2. Statistical Significance of TWS Linear Trends

Here, we used a novel method to determine the statistical significance of TWS linear trends at each grid cell.
We first determined the observed statistical significance level of the linear trend at each grid cell, separately
for each month from April 2002 to January 2017. At grid cell i, for month j, we fitted the linear regression

model to data for that month. The P value (p j
i ) was estimated by the two‐tailed Student's t distribution.

The monthly trend with p j
i smaller than α at 0.05 was determined as statistically significant. Then, to rate

the degree of statistical significance of TWS trends at the grid cell i, we counted the number of months pas-
sing the significance test. High values imply high degree of statistical significance and vice versa. Values of 9
and higher are denoted as statistically significant. Only grid cells with statistically significant trends are
included in the analysis of GRACE TWS changes in the following analysis.

3.3. TWS Annual Amplitude of Variability

To estimate the annual amplitude of the TWS variability at each grid cell, used for computing the change‐to‐
amplitude ratio, we calculated the amplitude of the seasonal component of the decomposed time series of
monthly TWSi at grid cell i. Figure S8 presents a global map of the annual amplitude of variability.

To assess how apparent the water storage changes are, we computed the ratio (Ratioi) of the TWS linear
change to the TWS annual amplitude (“change‐to‐amplitude” ratio) at each grid cell (Figures 1c and S9)
and then aggregated over the climate zones (bar plot in Figure 1c). The ratio quantifies the relative effects
of long‐term variability to interannual variability. There are four possible situations at each grid cell. First,
if the TWS trend is strong but the annual amplitude is small, the trend is apparent and readily noticeable.
Second, if the trend is strong and the annual amplitude is large, the trend may not be apparent in the short
term but may become apparent in the long term. Third, if the TWS trend is weak but the annual amplitude is
large, the trend may be difficult to detect for a long time. Fourth, if the TWS trend is weak and the annual
amplitude is small, the trend may be apparent and thus noticeable. In the study, if dTWSi is smaller than
−100 mm and Ratioi is smaller than −1, the grid cell is defined as having an apparent drying trend. To
the contrary, if dTWSi is larger than 100 mm and Ratioi is larger than 1, the grid cell is defined as having
an apparent wetting trend. It turns out that the grid cells with an apparent change overlapmost of those with
a greater significance defined in section 3.2 (Figure 1b). Calculations of the corresponding areal fraction are
described in section 3.5.

Figure 1. (a) GRACE TWS linear change (mm) from April 2002 to January 2017, (b) statistical significance by counting the number of months with TWS trends
passing the significance test with α at 0.05 (values of 9 or higher are defined as statistical significant; dotted area), (c) apparentness by evaluating the value of
TWS linear change and the change‐to‐amplitude ratio, and (d) patterns of drying and wetting of different climate regions by overlaying the GRACE TWS linear
change and climate regions. Dotted areas denote regions where the long‐term trends are statistically significant. In the bar plot of (d), the “dry lost water”
land area is 7.9% of the global land area, “humid gained water” is 2.3%, “dry gained water” is 3.1%, “humid lost water” is 2.2%, “cold gained water” is 1.9%, and
“cold lost water” is 2.8% accounting for grid cells with statistically significant trends.
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3.4. AI

AIwas computed as the ratio of the 30‐year (1948–1977) mean precipitation (P) (mm/day) to PET (mm/day)
output by GLDAS 2.0 LIS using Noah_v3.3 (Rodell et al., 2004).

AIi ¼ Pi

PETi
(1)

Following the definition of AI in the World Atlas of Desertification (Middleton & Thomas, 1997), we classi-
fied global land areas into different climate zones (Figure S10), with wet regions defined as where annual
mean AI ≥ 0.65 and PET ≥ 400 mm, cold regions as where AI ≥ 0.65 and PET < 400 mm, and dry regions
as where AI < 0.65. We further subdivided dry regions into hyperarid (AI < 0.05), arid (0.05 ≤ AI < 0.20),
semiarid (0.20 ≤ AI < 0.50), and dry subhumid regions (0.50 ≤ AI < 0.65). Figure S11 presents maps of
annual mean P and PET over 1948–1977, and Table S1 summarizes the climatic classification and area extent
over the globe. Overlaying the two maps of TWS linear change and AI (Figures 1a and S10) reveals the pat-
terns of drying and wetting in different climate zones (Figure 1d).

3.5. Area Fraction and Magnitude of TWS Linear Changes per Climatic Zone

For each land aridity type (L) (humid, cold, dry regions and subcategories) and associated hydrological con-
dition (C) (net, positive, and negative water storage changes) we computed the fraction of total terrestrial
area (PerA(L,C) in percentage) (excluding Antarctica and Greenland) and the expectedmagnitude of TWS lin-
ear changes (M(L,C) in millimeter) for 21 cases over the period April 2002 to January 2017. Equation 2 is used
to compute the area percentage PerA(L,C) for aridity zone Lwith hydrological conditionC by summing up the
area of corresponding grid cells and being divided by the total land area. Equation 3 is used to compute
the expected magnitude M(L,C) (in equivalent water depth in mm) by summing up the volumetric TWS
changes of corresponding grid cells and being divided by the total area of the aridity zone L. The uncertainty
Uncert(L,C) associated with the magnitudeM(L,C) is computed as the RSS of area‐weighted combined uncer-
tainty at corresponding grid cells (Equation 4). We followed Scanlon et al. (2018) and reported the TWS
change as the magnitudeM(L,C) bounded by the uncertaintyUncert(L,C). In the analysis, we only include grid
cells with statistically significant TWS trends defined by the number of months with consistent linear change
of 9 and higher (section 3.2).

PerA L; Cð Þ ¼ ∑ iA
L; Cð Þ
i

∑iAi
*100% (2)

M L; Cð Þ ¼
∑ i A L; Cð Þ

i * dTWS L; Cð Þ
i

h i

∑iA
Lð Þ
i

(3)

Uncert L; Cð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ i A L; Cð Þ

i * Uncert L; Cð Þ
i 2

h i

∑iA
Lð Þ
i

vuuut (4)

3.6. Noah‐MP LSM
3.6.1. Noah‐MP TWS
The Noah‐MP LSM (Niu et al., 2011) is an augmented multiparameterization version of the Noah LSM. The
model outputs include energy, water, and carbon flux exchanges between the land surface and the atmo-
sphere controlled by terrestrial ecohydrological processes and the corresponding storage terms. Here, we
drove the Noah‐MP LSM using GLDAS near‐surface atmospheric forcing data (Rodell et al., 2004) and
assessed the total TWS change as the sum of modeled groundwater storage, snow water equivalent, soil
moisture content, canopy water storage, and plant water storage in living tissues. Consistent with postpro-
cessing of the GRACE data, we also removed the static field averaged over all months from 2004 to 2009 from
the TWS time series at each grid cell. To evaluate the uncertainties in the meteorological forcing data, we
also drove the model using the Princeton forcing data (Sheffield et al., 2006).
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Noah‐MP explicitly represents groundwater storage in the unconfined aquifer depending on the recharge
rate based on Darcy's law and the discharge rate parametrized as a function of water table depth based on
the TOPMODEL concept (Niu et al., 2007). Snow water equivalent is computed as the dynamic balance of
snowfall, surface deposition/sublimation and dew/evaporation, and outflow of snowmelt from the bottom
of the snowpack (Niu et al., 2011). The Noah‐MP LSM solves the soil moisture content using the
one‐dimensional Richard's equation with the Clapp‐Hornberger soil water retention model (Clapp &
Hornberger, 1978). The temporal evolution of canopy water storage is calculated as the sum of snowfall,
rainfall, dew, and deposition minus the sum of drip, evaporation, sublimation, and throughfall. The current
version of Noah‐MP also explicitly represents the plant water storage as the residual of root water uptake and
transpiration (Niu et al., 2020; Wang et al., 2018). Although the plant water storage may be negligible com-
pared to other water storages, it is critical for plants' stomatal opening and transpiration.
3.6.2. Noah‐MP Updates and Parameterization Options Used in Simulations
The Noah‐MP version used in this study explicitly represents plant water storage supplied by dynamic root
water uptake through hydrotropic root growth to meet the transpiration demand (Niu et al., 2020). The
dynamic vegetation submodel (Dickinson et al., 1998) predicts leaf area index, which is converted from
the leaf carbon mass as the residual of photosynthates translocated to leaf and leaf turnover, respiration,
and death. Plant transpiration water loss is controlled by stomatal resistance, which is regulated by the plant
water storage, air temperature, humidity, CO2 concentration, light, and the leaf boundary layer resistance.
In the current version, the plant water availability factor β controlling the stomatal resistance is parameter-
ized as a function of water storage in the living plant tissues, Mq (Niu et al., 2020).

β ¼ min 1:0;
Mq −Mq; wilt

Mq;max −Mq; wilt

� �
(5)

where Mq,wilt represents the minimum plant water storage at the wilting point of 30 bars (306 m or
3.0 MPa) and Mq,max the maximum plant water storage when the plants are at full hydration. Actually,
this β represents the plant water available for transpiration (Mq − Mq,wilt) relative to the maximum water
that a plant can lose through transpiration until its wilting point (Mq,max − Mq,wilt). A low β indicates that
the plants are under water stress due to limited water storage and restricts the opening of stomata, redu-
cing CO2 uptake and carboxylation and transpiration water loss. While transpiration depletes the plant
water storage, Mq is replenished by root water uptake driven by the water pressure gradient between
the soils and the roots and computed analogous to Ohm's law (see Niu et al., 2020, for details). This
new version of Noah‐MP largely enhances the ecosystem resilience to water stress over drylands and dur-
ing droughts, while its previous version and other LSMs are generally more vulnerable to water stress, pro-
ducing lower leaf area index or ecosystem productivity during droughts (e.g., Mao et al., 2013; Zhu
et al., 2019).

Noah‐MP explicitly represents the groundwater storage in unconfined aquifers or “buckets” below its shal-
low, 2‐m soil column, which receive recharging water during wet periods to “buffer” water stress that the
plants may experience in later droughts through upward flows driven by capillary forces exerted by the soil
matrix. Noah‐MP modified the suction head of soil matrix with a micropore volume fraction ( fmic; Niu
et al., 2011) due to the common presence of macropores in soils formed by soil aggregates, fissures, dead
roots, and worm holes (Beven & Germann, 1982), which would reduce the suction head in a linear way.
As the value of fmic, which ranges from 0.0 to 1.0, approaches 0.0, the lower boundary becomes a free drai-
nage boundary condition, while fmic = 1.0 represents a full effect of capillary rise of groundwater. In this
study, we used a constant fmic value of 0.8 over global continents for lack of data.

We applied the Monin‐Obukhov similarity theory to compute the exchange coefficients of sensible and
latent heat within the surface layer (Brutsaert, 1982). For supercooled liquid water option, we used a general
form of freezing point equation, which requires no iteration (Niu & Yang, 2006). In terms of soil permeabil-
ity, we assumed that frozen soils exert linear effects on soil hydraulic conductivity and diffusivity, depending
on total soil moisture and impermeable fraction due to frozen soils (Niu & Yang, 2006). We adopted themod-
ified scheme of two‐stream radiation transfer through the plant canopy (Niu & Yang, 2004) and the
CLASS‐type for snow surface albedo (Verseghy, 1991). Partitioning of precipitation into rainfall and snowfall
uses a sigmoidal relationship of the wet bulb temperature (Wang et al., 2019). The lower boundary condition
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of soil temperature at 8 m deep is assumed the hourly climatology of the near‐surface air temperature. We
used a semi‐implicit snow/soil temperature time scheme. Table S2 summarizes the options we adopted in
this study.
3.6.3. Noah‐MP Parameters Used in Simulations
The dominant vegetation types covering these three regions are shrubland (PFT 8) and grassland (PFT 7).
The dominant soil types are loam (SOIL 6) and clay loam (SOIL 9). In Tables S3 and S4, we list the key para-
meters for the dominant vegetation types and soil types, respectively. In the supporting information, we
include an explanation and grid cell number of each vegetation and soil type over the drylands in the south-
western North America, the Middle East, and North China (Tables S5 and S6).

4. Results
4.1. GRACE TWS Changes
4.1.1. Dryland Regions
The TWS linear change exhibits a roughly latitudinal pattern that is particularly pronounced over midlati-
tude subtropical dry regions (Figures 1a and 1d). During the period of analysis, negative trends were found
for the dry regions over the southwestern North America, northern Sahara, the Middle East, and North
China in the NH and western Australia, central Argentina, and the Patagonia plateau in the Southern
Hemisphere. Importantly, the higher degree of statistical significance and change‐to‐amplitude ratios in
these regions indicate that their TWS linear changes are more significant (Figure 1b) and apparent
(Figure 1c). In contrast, dry regions at the southern tip of Africa and the wet‐to‐dry transitional (dry
subhumid) region of Australia became wetter (Figure 1d), with smaller absolute values of change‐to‐
amplitude ratios and lower degree of statistical significance.

Overall, the “dry lost water” land area accounts for 7.9% of the global land area, while the “dry gained water”
area is smaller (~3.1%). In terms of water depth, dry regions experienced a net global water loss of
15.9 ± 9.1 mm (Figure 2), with 22.1 ± 8.5 mm loss occurring in the “dry lost water” regions partially offset
by 6.2 ± 3.1mm gain in the “dry gained water” regions. The TWS changes in the “dry lost water” regions
are more significant and apparent than the “dry gained water” regions (Figures 1b and 1c), indicating a
stronger drying than wetting signals over global drylands.

These large‐scale subtropical drying patterns may be related to strengthening of the descending branch of
the Hadley cell under global warming (Lau &Kim, 2015; Trenberth, 2011), the drying tendency of continents
due to enhanced land warming (Byrne & O'Gorman, 2015), and anthropogenic influences through ground-
water extraction and agricultural irrigation (Gleeson et al., 2012; Reager et al., 2016; Rodell et al., 2018).
However, the trends may be temporary due to the influence of large‐scale atmospheric oscillations (Eicker
et al., 2016; Phillips et al., 2012; Rodell et al., 2018). The dryland regions in the central Australia show rela-
tively strong negative correlations between TWS time series andmultivariate ENSO index (Figure S14). Also,

Figure 2. TWS linear change from April 2002 to January 2017 over cold, humid, and dry regions (left) and the
subcategories of dry climate (right). The error bars represent uncertainty Uncert(L,C). Only grid cells with statistically
significant TWS trends are included.
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spurious signals associated with postprocessing of the GRACE data may also influence trend estimates in
affected regions, such as northwestern China (Humphrey et al., 2016).

Closer inspection of the dry climate region subcategories (Figure 2) reveals that decreases in TWS occurred
mainly in hyperdry and arid regions, with net water losses of 18.6 ± 8.0 and 25.6 ± 11.4 mm, respectively.
Meanwhile, water storage changes in semiarid regions (−9.4 ± 8.1 mm) and transitional dry subhumid zones
(−6.3 ± 6.8 mm) were uncertain.
4.1.2. Humid Regions
Over wet tropical regions, where convective storms dominate, the Amazon gained water, whereas the cen-
tral Congo and Southeast Asia lost water (Figures 1a and 1d). It is known that precipitation over tropical land
has decreased by ~0.3% per decade in a warming climate, explained by a negative relationship between pre-
cipitation and temperature anomalies (Gu et al., 2007; Liu et al., 2012). The correlation coefficients between
TWS and ENSO and PDO indexes are high over Southeast Asia (Figures S14 and S15), possibly indicating an
influence of natural climate variability on land water storage. However, the TWS linear change over these
regions is not apparent (Figure 1c) and the associated degree of statistical significance is low (Figure 1b).
Wet subtropical monsoon regions, including southwestern African Plateau and southern China, became
wetter (Figures 1a and 1d), possibly due to global intensification of the monsoons (B. Wang et al., 2012).
Wet extratropical regions in the NH (north of the subtropics and the southern part of the cold regions),
where frontal storms dominate, became wetter—with the wetting trend being most pronounced over
North America. This may be caused by changes in precipitation patterns due to poleward shifts of storm
tracks (Trenberth, 2011; Yin, 2005) and decreases in evaporation caused by tree mortality under a warming
climate (Allen et al., 2010). However, other factors, such as tectonics, may also affect GRACEmeasurements
(Cooley & Landerer, 2019). Earthquakes in Hokkaido in 2003, Sumatra‐Andaman in 2004, and Tohoku‐Oki
in 2011 were found to introduce anomalies of geoid height in the vicinity of epicenters during the events (De
Viron et al., 2008; Junyan et al., 2015; Sun& Zhou, 2012; L.Wang, Shum, et al., 2012). These anomalies in the
local time series might introduce outliers when calculating TWS trends.

Overall, the land area corresponding to “humid gained water” accounts for 2.3% of the global land area,
while that corresponding to “humid lost water” is smaller (~2.2%). In terms of water depth, wet regions
experienced a net global water change of 3.0 ± 4.8 mm (Figure 2), with 5.9 ± 2.5 mm of gain offset by
8.9 ± 4.1 mm of loss. Therefore, the pattern of drying and wetting over global humid regions are inconclusive
when accounting for the relatively large uncertainty. TWS changes over humid regions are not as significant
and apparent as changes over dryland regions (Figures 1b and 1c).
4.1.3. Cold Regions
In the NH high‐latitude cold regions, the land area that experienced wetting accounts for ~1.9% of global
land area and is smaller than the area that lost water (~2.8%). Overall, these cold regions experienced net
water loss of 35.0 ± 9.3 mm (Figure 2), with the 13.5 ± 5.2mm gain in “cold gained water” regions offset
by the 48.5 ± 7.7 mm loss in “cold lost water” regions. The water loss events mainly occurred in North
America, with almost all months passing the significance test and the negative TWS changes are apparent.
This amount of loss may result from melting of snow and ice due to the warming climate (IPCC, 2014).

4.2. Data Analysis and Model Simulations Over Three Selected Dryland‐Drying Regions

As the GRACE satellites record the combined natural and anthropogenic effects on TWS changes, isolating
the individual contributions to the trends is challenging. To understand the likely major causes of the
observed TWS negative trends over dryland regions, we conducted climatic data analysis and model simula-
tions over three selected dryland regions (Figure 3a) located in the southwestern North America (Region 1),
the Middle East (Region 2), and North China (Region 3) that show the most apparent and significant
decreasing trends. Figures 3b–3g show the effects of atmospheric demand (PET) and supply (P) on the
TWS trends. Annual AI is computed as the ratio of annual P to annual PET from 1948 to 2016. The correla-
tion coefficients between annual P and PET with ENSO and PDO indexes over 2002 to 2016 are provided to
evaluate impacts of natural climate variability (Table 1). Besides the atmospheric control, we also ran virtual
experiments with the Noah‐MP LSM to investigate effects of terrestrial ecohydrological processes on TWS
variations. Figure 4 compares the GRACE TWS anomaly and Noah‐MP simulated TWS anomaly over the
three regions. Figure 5 shows cumulative deviations (Shuttleworth, 2012) of themodel‐simulated fluxes, that
is, accumulated departures in monthly water fluxes from their mean values during GRACE period. The
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advantage of using cumulative deviation is that it can amplify the signals of drying and wetting trends.
Besides the control model experiment (CTRL with fmic at 0.8 and the dynamic root scheme described in
section 3.6), we also conducted two additional model sensitivity experiments FMIC ( fmic at 0.2 and
dynamic root described in section 3.6) and ROOT ( fmic at 0.8 and a prescribed, static root profile) to
understand TWS responses to groundwater and root dynamics over the dryland regions.

Over the drylands in the southwestern North America and the Middle East, PET has experienced an increas-
ing trend since the 1980s (Figures 3b and 3d), implying an enhanced atmospheric demand for water vapor
caused by the warming, whereas the atmospheric supply (P) declined during the GRACE period. TWS trends
closely follow the declining AI (Figures 3c and 3e), indicating a control of the atmospheric supply‐and‐
demand contrast on TWS under the warming over the two regions. TWS lags approximately 1 year behind
AI, possibly due to a delayed response of the TWS to climatic variations. The correlation coefficients between
annual PET with ENSO and PDO indexes are relatively small over the two regions (Table 1). However, the
coefficients between the indexes with P are larger, indicating possible influences of natural climate variabil-
ity on direct water input from the atmosphere to the land surface.

Table 1
Correlation Coefficients Between Annual Mean PET and P With Multivariate ENSO and PDO Indexes From 2002 to 2017

ENSO with P PDO with P ENSO with PET PDO with PET

Region 1 0.42 0.56 −0.19 −0.24
Region 2 0.49 0.30 0.09 0.12
Region 3 −0.18 −0.11 0.22 0.03

Figure 3. (a) Locations of three dryland‐drying regions in Northern Hemisphere midlatitudes used in Noah‐MP LSM
simulations. Regions 1, 2, and 3 are located in the southwestern North America, the Middle East, and North China.
Time series of annual total PET (EP in the legend) and precipitation (Precp), annual aridity index (AI), and annual mean
TWS for the three dryland‐drying regions (b, c) southwestern North America, (d, e) Middle East, and (f, g) North China
from 1948 to 2016.
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The model‐simulated TWS follows the observed decreasing tendency and variability over the two regions
(Figure 4). Cumulative deviations of the water fluxes between the land surface and the atmosphere
(Figure 5) show that precipitation supply plays a dominant role in controlling TWS than actual ET.
Contrary to the increasing atmospheric demand PET, the actual ET is largely suppressed by the limited land
water supply in the dry regions. The model‐simulated TWS slightly overestimates the negative trend
(−0.38 mm/month) of the GRACE estimates (−0.29 mm/month) over the southwestern North America
(Figure 4a). This overestimation of the negative TWS trend is mainly due to an underestimation of TWS
anomalies after the drought since 2011 (Long et al., 2013). Additional experiments indicate that the modeled
TWS anomalies are sensitive to different values of themicropore volume fraction, fmic, and different schemes
of plant hydraulics and root dynamics (Figure 6). The deeper trough of the modeled TWS anomaly since
2011 may be caused by overestimation in the capillary rise of groundwater (too large fmic) or too strong plant
root water uptake (Figure 6a). With the same fmic value and plant hydraulics, the model (CTRL) produces
the TWS trend (−0.72 mm/month) that agrees fairly well with the GRACE TWS trend (−0.71 mm/month)
and seasonal variability (Figure 4b) over the drylands in the Middle East. Without implementing human
water withdrawal in the model, Noah‐MP driven by the GLDAS atmospheric forcing data simulates the
decreasing trends of TWS. Based on the climatic data analyses (Figure 3), and supported by the modeling
results (Figure 4), we infer that climatic factors played a dominant role in causing the declining TWS trends
over the southwestern North America and the Middle East than human water withdrawal.

However, over the GRACE period, the GRACE TWS trend is not consistent with theAI trend in North China
(Figure 3g). While the increasing AI indicates a slightly wetting tendency under the warming conditions
(Figures 3g and 3f ), the GRACE TWS indicates a decreasing trend (−0.30 mm/month). The correlation coef-
ficients between P and PET with ENSO and PDO indexes are relatively low, with absolute values smaller
than 0.4 (Table 1). Further, the modeled TWS trend (−0.15 mm/month) explains only about one half of
the trend detected by GRACE (Figure 4c). The underestimation of the negative trend by Noah‐MP from
2012 on indicates that climatic forcing cannot completely explain the TWS decreasing trend detected by

Figure 4. Monthly TWS anomalies by GRACE data and the Noah‐MP model simulations over (a) the southwestern
North America, (b) the Middle East, and (c) North China from April 2002 to January 2017. The dashed lines represent
least squares linear trends. Over the southwestern North America, the trend values are −0.29 and −0.38 mm/month
using GRACE data and Noah‐MP model outputs, respectively. Over the Middle East, the trend values are −0.71 and
−0.72 mm/month. Over North China, the trend values are −0.30 and −0.15 mm/month.
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GRACE. It is likely, therefore, that human activities (Yuan et al., 2019), such as groundwater withdrawal for
irrigation may be the dominant factor; this interpretation is supported by the map of fractional irrigation
area (Figure S20). Xu et al. (2019) also found the underestimation of the TWS change relative to GRACE
over North China using two global hydrological models. However, after accounting for human water use,
their modeled TWS trend is comparable to the GRACE observation. Besides human impacts, our additional
virtual experiments indicate that the simulations are sensitive to the representations of the terrestrial ecohy-
drological processes (Figure 6).

The current version of Noah‐MP explicitly represents groundwater dynamics and plant water storage
dynamics through root water uptake, which is proportional to root surface area at different soil layers that
are converted from the root biomass by specific root surface area. The model allows more photosynthate
translocation to roots when the plants are under water stress and represents root hydrotropism through
more translocation of photosynthate to but less turnover of root biomass in wetter soil layers. These devel-
opments enable a substantial advancement in representation of ecosystem function and resilience to water
stress. Our sensitivity experiments indicate that the Noah‐MP LSM conserves water mass, and the modeled
water fluxes and TWS anomalies are sensitive to different values of micropore volume fraction, fmic, and dif-
ferent schemes of plant hydraulics and root dynamics (Table 2). While the overall “dryland‐drying” trends
remain very similar, the TWS trends from these experiments differ to some extent, suggesting the impor-
tance of terrestrial water “supply” under the warming‐caused increase in water “demand.” In CTRL,
Noah‐MP uses the same model parameters (e.g., fmic = 0.8) for all the three regions. This may lead to over-
estimation of the negative trend over the southwestern North America, while the model matches well with
the GRACE trend and variability over the Middle East.

Given the observational facts of widespread woody encroachment (Andela et al., 2013), dryland greening
(Fensholt et al., 2012; Zhu et al., 2016), and increasing trends in the net carbon sink in semiarid regions
(Ahlström et al., 2015) despite warming‐associated drying trend, dryland ecosystems may have become an
“active” driving force for TWS by “pumping” deeper soil water and groundwater through extended

Figure 5. Cumulative deviations of monthly evapotranspiration (ET), precipitation (P), and runoff (Q) over (a) the
southwestern North America, (b) the Middle East, and (c) North China from April 2002 to January 2017. ET and Q
are simulated by the Noah‐MP LSM, and P is calculated using the GLDAS forcing data. Cumulative deviations are
computed as accumulated departures in monthly water fluxes from their mean values.
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rooting systems that enable plants to survive droughts (Fan et al., 2017). Compared to other ecosystems,
dryland ecosystems show much stronger resiliency or higher capacity to tolerate water stress. The rain use
efficiency (or biomass productivity per unit rainfall) of dryland ecosystems tends to increase under drier
conditions and converge across biomes to a common maximum value during the driest conditions
(Huxman et al., 2004; Ponce‐Campos et al., 2013).

Based on the climatic data analyses andmodel simulations, we infer that the dryland‐drying patterns are lar-
gely controlled by the climatic demand‐and‐supply contrast that is strongly regulated by terrestrial ecohy-
drological processes and human water withdrawal. Over the drylands in the southwestern North America
and the Middle East, climatic factors play a dominant role. However, comparable effects of climatic factors
and anthropogenic interventions may determine the negative TWS change over North China. This interpre-
tation is consistent with a recent analysis using partial least squares regression (Yuan et al., 2019).

5. Discussion

Overall, our GRACE TWS data analysis indicates that the “dry lost water” land area is larger than that of
“dry gained water,” while the “humid gained water” land area is larger than that of “humid lost water.”

Figure 6. Modeled monthly TWS anomalies over (a) the southwestern North America, (b) the Middle East, and (c) North
China from April 2002 to January 2017 by CTRL, FMIC, and ROOT experiments. CTRL implements the dynamic root
scheme (section 3.6) with fmic at 0.8. FMIC implements the dynamic root scheme with fmic at 0.2. ROOT uses a
prescribed, static root scheme with fmic at 0.8.

Table 2
AveragedWater Budgets of P, ET, and Runoff, Q (mm/Month), Over Region 1 (Southwestern North America), Region 2 (the
Middle East), and Region 3 (North China) From April 2002 to January 2017 by CTRL, FMIC, and ROOT Experiments

Experiment

Region 1 Region 2 Region 3

P ET Q P ET Q P ET Q

CTRL 39.0 34.8 3.8 20.6 18.2 2.8 28.5 27.3 1.2
FMIC 39.0 32.2 6.4 20.6 16.3 4.6 28.5 25.4 3.0
ROOT 39.0 31.1 3.4 20.6 17.0 1.7 28.5 25.6 0.7

10.1029/2020WR027102Water Resources Research

CHANG ET AL. 12 of 17



Dry regions experienced a net water loss of 15.9 ± 9.1 mm, while wet regions experienced a net water change
of 3.0 ± 4.8 mm. These findings support the amplification of the contrast between dry and wet patterns over
land, in particular the signal of water storage declining in drylands. However, the apparentness map and the
statistical significance map indicate that, over tropical wet regions, the signal is less obvious (shows less con-
trast) and less significant, whereas the signal over subtropical midlatitude “dry lost water” regions is more
apparent and significant. Drying dry regions exhibit a change‐to‐amplitude ratio exceeding 1 (Figure S9)
and the number of months with significant TWS trends exceeding 9. Overall, we conclude that water storage
declined over drylands, supported by TWS data at the decadal scale.

We also supported the “dryland‐drying” hypothesis using the CSR GRACE mascons (Figures S12 and S13).
The spatial patterns of drying/wetting over climate regions, the apparentness and statistical significance of
TWS changes, are comparable to those using SH solutions. Results from both SH and mascons indicate a
greater areal extent of dryland‐drying areas than dryland‐wetting areas (Figure S12) and a net negative
change of water amount over global dryland regions (Figure S13). However, despite the comparable
large‐scale spatial patterns, there are disparities between values of TWS changes and regional‐scale patterns
on the maps. The magnitude of TWS changes estimated using the GRACE mascons from CSR is larger than
that using SH (Figure S12a). The difference has been demonstrated in previous research by Scanlon
et al. (2016). Unlike SH, CSR mascons exhibit bipolar patterns over drying regions in the SW North
America and East Brazil, possibly due to a higher spatial resolution at 0.5° and different algorithms.

Most current fully coupled climate models, however, are unable to simulate the “dryland‐drying” trends
(Kumar et al., 2015). This may be because the modeled ET cannot exceed precipitation at decadal scales
due to limited availability of water over dry regions, whereas over the oceans, the water availability is effec-
tively unlimited (Kumar et al., 2015). Also, the current macroscale hydrological models and uncoupled LSMs
for use in the climate models are unable to generate accurate estimates of ET (especially its accumulative
effects on TWS) and produce much weaker TWS trends compared to that of GRACE (Scanlon et al., 2018)
due to incomplete representations of the ecohydrological processes controlling ET, for example, plant
hydraulics and root dynamics. In addition, enhanced groundwater loss through vaporization and diffusion
within the soil and evaporation at the soil surface under a warming climate, though at a small rate, may not
be negligible at decadal scales (Kamai & Assouline, 2018). It is most likely that through these “pumping”
mechanisms, ET becomes larger than precipitation at decadal scales, causing the “dryland‐drying” trends.

In this study, our simulated TWS using the Noah‐MP LSM can closely follow the GRACE observations and
produce comparable trends over drylands in the southwestern North America and Middle East. To test
model consistency and the sensitivity of Noah‐MP to different meteorological forcing data, we repeated
the CTRL experiment using the Princeton reanalysis data (Sheffield et al., 2006). The TWS trends and seaso-
nal variations are very similar using the different climate forcing data (Figure S16). However, the Princeton
forcings produce higher TWS anomalies before 2005 and smaller annual amplitudes throughout the GRACE
period than the GLDAS forcings. Starting 2001, monthly precipitation of GLDAS exceeds that of the
Princeton reanalysis, in particular during wet seasons (Figure S17). However, the atmosphere is less humid
(QAIR) represented by GLDAS than the Princeton data (Figure S19). Therefore, the model is driven by both
greater water supply and greater demand using GLDAS forcings than Princeton reanalysis data. The atmo-
spheric supply‐demand balance and its cumulative effects over time lead to the discrepancies in the temporal
variations of simulated TWS by the two forcing data sets. Despite the differences, experiments with both cli-
matic forcing data sets support the “dryland‐drying” conclusion with negative TWS changes.

Uncertainties in model structure and parameters may substantially affect the TWS modeling results as
reflected from the model sensitivity experiments (Figure 6) and thus confound disaggregation of the climatic
and anthropogenic drivers. Themodel version used in the CTRL experiment largely improves the model rea-
lism with augmentations in representing plant hydraulics and root dynamics, although it is still uncertain in
representing the soil water retention characteristics by different models (Niu et al., 2020). Our conclusion
that anthropogenic water withdrawal may have played a more dominant role in the declining TWS in
Northern China based on the modeling results is further confirmed by the map of fractional irrigation area
(Figure S20) and consistent with a recent analysis using partial least squares regression (Yuan et al., 2019). In
this study, we used the Noah‐MP LSM as an interpreting tool to explore possible causes to the dryland drying
trend that needs ET to be greater than precipitation at decadal scales. However, to more accurately discern
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the two drivers, it requires further advancements in both model developments based on improved predictive
understanding of the terrestrial ecohydrological processes and data developments based on in situ metered
water use data and remote sensing data (e.g., the irrigated area).

6. Conclusions

Our analysis of the GRACE TWS suggests that more than half of the global drylands (58%) experienced nega-
tive TWS changes during the period April 2002 to January 2017. Dry regions lost ~15.9 ± 9.1 mm of water,
with 22.1 ± 8.5 mm loss occurring in the “dry lost water” regions partially offset by 6.2 ± 3.1mm gain in the
“dry gained water” regions. Decreases in TWS occurred mainly in hyperdry (18.6 ± 8.0 mm) and arid regions
(25.6 ± 11.4 mm). The TWS changes over the “dry lost water” regions show a higher degree of statistical sig-
nificance than over the “dry gained water” regions. Compared to local annual amplitudes of variability, the
TWS changes were more apparent in dry regions than in wet regions, highlighting a drying signal from dry-
lands. However, due to the brevity of the 15‐year GRACE period, the TWS trends may be subject to interann-
ual and interdecadal hydrological variability.

To understand the large‐scale dryland‐drying mechanisms over the NH midlatitudes, we used the
near‐surface climate data sets from GLDAS and model simulations conducted using the Noah‐MP LSM.
Over drylands in the southwestern North America and the Middle East, the climate data and GRACE
TWS consistently indicate a drying signal. Model simulations without anthropogenic impacts suggest that
the negative TWS trends are largely attributable to climate drivers regulated by terrestrial ecohydrological
processes over the two regions. However, over the drylands in North China, the GRACE TWS anomaly data
indicate a drying trend while the climate data suggest a slightly wetting trend. In addition, the model simu-
lations driven only by climatic forcings are not able to reproduce the observed TWS trend. The climate data
analyses and model simulations suggest that the drying trends in North China may be largely attributed to
intense anthropogenic water withdrawals as supported by the large areal extent of irrigated agricultural
lands over North China. Overall, our data analysis and model simulations suggest that climatic factors plays
a more dominant role in the declining water storage at a decadal scale over the drylands in the southwestern
North America and the Middle East than does the anthropogenic water withdrawal, while anthropogenic
groundwater pumping is more dominant in North China.
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